8. Calculation of how long wheel takes to complete one revolution:

$$
\begin{align*}
& \text { Time }=2 \pi \times 60 \mathrm{~m} / 0.20 \mathrm{~m} \mathrm{~s}^{-1} \mathbf{(1)} \\
& =1900 \mathrm{~s} / 1884 \mathrm{~s} / 31.4 \mathrm{~min}(\mathbf{1}) \tag{2}
\end{align*}
$$

Change in passenger's velocity:
Direction changes OR up (N) \rightarrow down (S) OR $+\rightarrow-(\mathbf{1})$
OR 180° (1)
$0.40 \mathrm{~m} \mathrm{~s}^{-1}$
[$0.40 \mathrm{~m} \mathrm{~s}^{-1}$ without direction $=2 / 2$]
Calculation of mass:
(G)pe $=m g h$
$m=80 \times 10^{3} \mathrm{~J} / 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 120 \mathrm{~m}$) (1)
[This mark is for rearranging the formula; accept 10 instead (1)
of 9.81 and 60 instead of 120 but do not e.c.f. to next mark]
$m=68 \mathrm{~kg}(\mathbf{1})$
3
Sketch graph:

Labelled axes and line showing PE increasing with time
Sinusoidal shape (1)
($950 \mathrm{~s}, 80 \mathrm{~kJ}$) (1)
[Accept half the time they calculated at start of question (1) instead of 950 s as e.c.f.]
[PE vh 0/3]
Whether it is necessary for motor to supply the gpe:
No, because passenger on other side is losing gpe (1)
If wheel equally loaded OR balanced with people (1)
OR
Yes, because no other passengers (1) so unequally loaded (1) 2
9. Calculation of resultant force:

$$
\begin{align*}
& {\left[a=(v-u) / t=16 \mathrm{~m} \mathrm{~s}^{-1}[(4 \times 60) \mathrm{s}]\right.} \\
& \quad=0.0666 \mathrm{~m} \mathrm{~s}^{-2} \\
& \left.F=m a=84000 \mathrm{~kg} \times 0.0666 \mathrm{~m} \mathrm{~s}^{-2}=5600 \mathrm{~N}\right] \\
& \text { OR } \tag{1}
\end{align*}
$$

Use of $\frac{(v-u)}{t} \quad$ use of $m v$
Use of $F=m a$ use of $\frac{m v}{t}$
(1)
5600 N
5600 N
(1) 3

Free-body force diagram:
Diagram [truck can be just a blob] showing:

$823200-840000 \mathrm{~N}$ down	
same as down	up
11200 N	either way
correct resultant	to left

[Ignore friction. Each extra force -1]
Calculation of average power:

$$
\begin{align*}
& \text { Power }=\mathrm{KE} \text { gained } / \text { time }=1 / 2 \mathrm{mv}^{2} / \mathrm{t} \quad \mathrm{OR} \quad \mathrm{KE}=3.84 \times 10^{8} \mathrm{~J} \tag{1}\\
& =3.84 \times 10^{8} \mathrm{~J} /(4 \times 60) \mathrm{s} \\
& =1.60 \times 10^{6} \mathrm{~W} \quad\left[\mathrm{OR} \mathrm{~J} \mathrm{~s}^{-1}\right]
\end{align*}
$$

Other credit-worthy responses:
$1 / 2 m v^{2}$
Fv
$\frac{F d}{t}$
$\frac{1}{2} \times \frac{3 \times 10^{6} \times 16^{2}}{240} \quad 3 \times 10^{6} \times 0.666 \times 8 \quad \frac{3 \times 10^{6} \times 0.666 \times 1920}{240}$
[e.c.f. 0.666 and 1920
possible]
$1.6 \times 10^{6} \mathrm{~W}$
$1.6 \times 10^{6} \mathrm{~W}$
$1.6 \times 10^{6} \mathrm{~W}$
(1)
(1)

Calculation of average current:
$P=I V=I \times 25000 \mathrm{~V}=1.60 \times 10^{6} \mathrm{~W}$
Use of $P=I V$
2
10. Completion of table:

Force	Description of force	Body which exerts force	Body the force acts on
\boldsymbol{A}	Gravitational	Earth	Child
\boldsymbol{B}	(Normal) reaction OR contact OR E/M (1)	Earth/ground Child (1) for both	
C	Gravitational [Not gravitational weight] (1)	Child (1) for both	Earth

Why A and B are equal in magnitude:
Child is at rest/equilibrium OR otherwise child would move/accelerate (1)
[NB use of N3 would contradict this]
Why must forces B and D be equal in magnitude:
Newton's third law OR action + reaction equal and opposite (1)
[NB use of N1 or N2 here would contradict this] [Not Newton pair]
What child must do to jump and why he moves upwards:
Push down, increasing D (1)
$\therefore B$ increases [must be clearly B or description of B] (1)
and is > A OR there is a resultant upward force [clearly on child] (1)
[Not "movement"]
3
11. Average force
multiplied by distance moved in direction of force
Work done negative when force is in opposite direction to displacement
Kinetic energy is reduced/gets less
Free body diagram:
Weight vertically downwards (1)
Produced by gravitational pull of Earth (1)
F (resistive force/drag) parallel to slope and upwards (1)
Produced by (friction with) snow/air (1)
Resultant force: zero
Work done by N: zero 2
12. Free-body force diagram

Normal reaction/contact force [or Nor R or push of table] upwards (1)
E-M/Magnetic force [or magnetic attraction or pull of magnet] to right
Weight [or W or mg or gravitational force or gravitational attraction or pull of Earth] downwards
(1)
[Ignore labelled forces of fiction. or drag] [if unlabelled -1 each force]
Forces
Pull on earth (1)
Upwards [consequent] (1)
OR
Push/contact force/force on table (1)
Downwards [consequent] (1)
OR
Force on magnet X (1)
To left [consequent] [allow ecf] (1) 2
13. Mass approximately 4 kg
Use of volume $=\pi r^{2} \times h(\mathbf{1)}$
Use of mass $=$ their volume above \times density (1)
Mass $=3.75$ (i.e. ≈ 4) [no u.e.] [Must be calculated to 2 significant figures at least] (1)
3
Calculation of change in g.p.e
Use of Δ g.p.e $=m g \Delta h(e c f$ from above $)(\mathbf{1})$
39 - 44 J (positive or negative) (1) 2
Calculation of average power output
Use of Power $=$ energy/time or use of $P=F v\left(v=1.8 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{1})$
Correct conversion of time into seconds (604 800 s) (1)
$6.4-7.3 \times 10^{-5} \mathrm{~W}$ [e.c.f. gpe above] (1) 3
[Answer in J/day, J/week, J/hour - can get 2 marks, i.e. $1^{\text {st }}$ and $3^{\text {rd }}$ marks]
14. Magnitude of resultant force
4 cm line $\mathrm{S} / 1.7 \mathrm{~cm}$ line $\mathrm{N} \quad 1$
8 cm line NE / 8N resolved into two perp. components (5.7E \& 1
1.7 N or 5.7 N)
Correct construction for vector sum 1
$5.7-6.1 \mathrm{~N} \quad 1$
Name of physical quantities
Vectors 1
Two other examples
Any two named vectors other than force 1 (if>2, must all be vectors)

15. Addition to diagram

Downwards arrow Y through middle third of left leg 1
Downward arrow Z with correct line of action 1
[Ignore lengths of arrows and point of action]
[Must have at least one correct label to get 2 marks; no labels gets max 1 out of 2]
[One correct label can get 2 marks]
Explanation
Quality of written communication 1
Clockwise moments = Anticlockwise when balanced 1
Y is smaller than X, but acts further from $P \quad 1$
Moment of $X=X \times X P /$ Moment of $Y=Y \times Y P \quad 1$
Z has little or no moment about P / Z acts through $\mathrm{P} \quad 1$
16. Resultant force

4 N to the right / 4 N with correct arrow (1) 1
Motion of object
(i) Constant velocity / $a=0 /$ constant speed (1)
(ii) Accelerates upwards (1)
(iii) Slows down (1)

Student's argument

The forces act on different bodies (1)
Therefore cannot cancel out / there is only one force acting on the body [consequent]
17. Table

Type of force	Example
Gravitational	Weight/attraction between two masses
Electromagnetic	Normal reaction/friction/drag/tension/force between two charges or magnets/motor effect/ elastic strain forces/contact forces
Nuclear	Strong/Weak/force keeping protons (and/or neutrons) together/beta decay/forces within nucleus

Forces

Any three from:

- \quad same type (1)
- \quad same magnitude/equal (1)
- act on different bodies/exerted by different bodies (1)
- opposite direction (1)
- \quad same line of action (1)
- acts for same time (1) Max 3

18. Deceleration of trolley

Select $v^{2}=u^{2}+2 a x /$ both appropriate formulas (1)
Correct substitutions (1)
0.309 [2 significant figures minimum](1) 3

Frictional force
Use of $F=m a(\mathbf{1})$
8.7 / 8.6 N [8.4 if 0.3 used] (1) 2

Power
Use of $P=F v(1)$
9.6 / 9.5 W [9.2 if 0.3 used] (1) 2

Force
Use of $a=(v-u) / t(\mathbf{1})$
Add 8.6 /8.7 N to resultant force [8.4 if 0.3 used] (1)
42.8 N [42.6 if 0.3 used] [Accept 42.2 N$]$ (1) 3
19. Criticism of statement

Not a Newton third law pair (1)
Forces in equilibrium but not for reason stated (1)
N3 pairs act upon different bodies (1)
N3 pairs same type (1)
Line of action different / rotation (1)
Max 3

Table
Gravitational (1)

Earth (1)

Upwards and downwards [both must be correct] (1)
Table (1)

Force	Type of force	Direction of Newton $3^{\text {rd }}$ law 'pair' force	Body 'pair' force acts upon
Weight	Gravitational	Upwards	Earth
Push of table	Electro-magnetic	Downwards	Table

20. (a) Free body force diagram for magnet
(Electro)magnetic / (force of) repulsion / push (1)

Weight / W / mg / pull (of Earth) / gravitational (attractive force) / attraction (of Earth) (1)
[NOT gravity]
[An additional incorrect force cancels 1 mark awarded]
(b) Newton's third law pairs

Force	Body on which corresponding force acts	Direction of the corresponding force
Contact	(Wooden) stand/base	Downwards / down $/ \downarrow$
Magnetic	(Magnet) M_{1}	(1) (1)
Weight	Earth / Earth's surface	Upwards / up $/ \uparrow$

21. (a) Calculation of weight

Use of $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathbf{1})$
Substitution into density equation with a volume and density (1)
Correct answer [49.4 (N)] to at least 3 sig fig. [No ue] (1)
[Allow $50.4(\mathrm{~N})$ for answer if $10 \mathrm{~N} / \mathrm{kg}$ used for g.]
[If 5040 g rounded to 5000 g or 5 kg , do not give $3^{\text {rd }}$ mark; if conversion to
kg is omitted and then answer fudged, do not give $3^{\text {rd }}$ mark]
[Bald answer scores 0 , reverse calculation 2/3]
$80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm}=7200 \mathrm{~cm}^{3}$
$7200 \mathrm{~cm}^{3} \times 0.70 \mathrm{~g} \mathrm{~m}^{-3}=5040 \mathrm{~g}$
$5040 \mathrm{~g} \times 10^{-3} \times 9.81 \mathrm{~N} / \mathrm{kg}$
$=49.4(\mathrm{~N})$
[May see :
$80 \mathrm{~cm} \times 50 \mathrm{~cm} \times 1.8 \mathrm{~cm} \times 0.7 \mathrm{~g} \mathrm{~m}^{-3} \times 10^{-3} \times 9.81 \mathrm{~N} / \mathrm{kg}$
$=49.4(\mathrm{~N})]$
(b) (i) Horizontal and vertical components

Horizontal component $=(83 \cos 37 \mathrm{~N})=66.3 \mathrm{~N} / 66 \mathrm{~N}(\mathbf{1})$
Vertical component $=(83 \sin 37 \mathrm{~N})=49.95 \mathrm{~N} / 50 \mathrm{~N}(\mathbf{1})$
[If both calculated wrongly, award 1 mark if the horizontal was identified as $83 \cos 37 \mathrm{~N}$ and the vertical as $83 \sin 37 \mathrm{~N}$]
(ii) Add to diagram

Direction of both components correctly shown on diagram (1)
(iii) Horizontal force of hinge on table top
$66.3(\mathrm{~N})$ or $66(\mathrm{~N})$ and correct indication of direction [no ue] (1)
[Some examples of direction: acting from right (to left) / to the left /
West / opposite direction to horizontal. May show direction by arrow.
Do not accept a minus sign in front of number as direction.]
22. (a) (i) Newton's First law of Motion

An object will remain (at rest or) uniform/constant velocity/speed/motion in a straight line unless (an external/impressed) force acts upon it / provided resultant force is zero. (1)
(ii) Everyday situation

Reference to air resistance / friction / drag etc. (1)
(iii) Equilibrium

The resultant force is zero / no net force /sum of forces is zero / forces are balanced / acceleration is zero (1)
[Accept moments in place of force]
(b) (i) Identify the other force

Earth (1)
Gravitatio
Gravitational [consequent on first mark] [Do not credit gravity.] (1)
(ii) Why normal contact forces are not a Newton's third law pair

Do not act along the same (straight) line / do not act from the same point (1)
They act on the same body (1)
They act in the same direction / they are not opposite forces (1)
They are of different magnitudes (1)

$$
\max 2
$$

23. (a) Complete statement of Newton's Third Law of Motion
....exerts an equal force on (body) A (1)
(but) in the opposite direction (to the force that A exerts on B) (1)
['exerts an equal but opposite force on body A' would get both marks]
(b) Complete the table

1 mark for each of the three columns (1) (1) (1)
[Accept from earth for up. Accept towards ground or towards earth for down]

	Earth	Gravitational. [Not 'gravity'. Not gravitational field strength]	Up (wards) $/ \uparrow$
	Ground		Down(wards) $/ \downarrow$

