8. Calculation of how long wheel takes to complete one revolution:

Time = $2\pi \times 60 \text{ m/0.20 m s}^{-1}$ (1) = 1900 s/1884 s/31.4 min (1)

Change in passenger's velocity:

Direction changes OR up (N) \rightarrow down (S) OR + \rightarrow - (1)

OR 180° (1) 0.40 m s⁻¹ [0.40 m s⁻¹ without direction = 2/2]

Calculation of mass:

(G)pe = mgh $m = 80 \times 10^3 \text{ J/9.81 m s}^{-2} \times 120 \text{ m}$) (1) [This mark is for rearranging the formula; accept 10 instead (1) of 9.81 and 60 instead of 120 but do not e.c.f. to next mark] m = 68 kg (1)

Sketch graph:

GPE/kJ GPE/kJ 80 80 OR t/s t/s 950 950 Labelled axes and line showing PE increasing with time Sinusoidal shape (1) (950 s, 80 kJ) (1) [Accept half the time they calculated at start of question (1) instead of 950 s as e.c.f.] [PE v h 0/3] 3 Whether it is necessary for motor to supply the gpe: No, because passenger on other side is losing gpe (1) If wheel equally loaded OR balanced with people (1) OR Yes, because no other passengers (1) so unequally loaded (1) 2 [12] Calculation of resultant force: $[a = (v - u)/t = 16 \text{ m s}^{-1}[(4 \times 60) \text{ s}]$ $= 0.0666 \text{ m s}^{-2}$

 $F = ma = 84\ 000\ \text{kg} \times 0.0666\ \text{m s}^{-2} = 5600\ \text{N}$]

OR

Use of
$$\frac{(v-u)}{t}$$
 use of mv (1)

9.

2

3

Use of
$$F = ma$$
 use of $\frac{mb}{t}$ (1)

5600 N

5600 N (1)

3

Free-body force diagram:

Diagram [truck can be just a blob] showing:

 $\begin{array}{c} & & & & & \\ & & & &$

Calculation of average power:

Power = KE gained/time = $\frac{1}{2}mv^2/t$	OR	$\mathrm{KE} = 3.84 \times 10^8 \mathrm{J}$	(1)
$= 3.84 \times 10^8 \text{ J/(4} \times 60) \text{ s}$			(1)
$= 1.60 \times 10^{6} \text{ W} \text{ [OR J s}^{-1}\text{]}$			(1)
			3

Other credit-worthy responses:

$$\frac{1}{2} m v^{2} \qquad Fv \qquad \frac{Fd}{t} \qquad (1)$$

$$\frac{1}{2} \times \frac{3 \times 10^{6} \times 16^{2}}{240} \qquad 3 \times 10^{6} \times 0.666 \times 8 \qquad \frac{3 \times 10^{6} \times 0.666 \times 1920}{240} \qquad (1)$$

$$[e.c.f. \ 0.666 \ and \ 1920] possible]$$

$$1.6 \times 10^{6} \ W \qquad 1.6 \times 10^{6} \ W \qquad (1)$$

$$3$$

Calculation of average current:

$$P = IV = I \times 25\ 000\ \text{V} = 1.60 \times 10^6\ \text{W}$$
 Use of $P = IV$ 2

[12]

10. Completion of table:

Force	Description of force	Body which exerts force	Body the force acts on
A	Gravitational	Earth	Child
B	(Normal) reaction OR contact OR E/M (1)	Earth/ground (1) for both	Child
C	Gravitational [Not gravitational weight] (1)	Child (1) for both	Earth

Why *A* and *B* are equal in magnitude:

Child is at rest/equilibrium OR otherwise child would move/accelerate (1) [NB use of N3 would contradict this]

Why must forces *B* and *D* be equal in magnitude:

Newton's third law OR action + reaction equal and opposite (1)	
[NB use of N1 or N2 here would contradict this] [Not Newton pair]	

What child must do to jump and why he moves upwards:

Push down, increasing D(1)

 \therefore *B* increases [must be clearly *B* or description of *B*] (1)

and is > *A* OR there is a resultant upward force [clearly on child] (1) [Not "movement"]

11. Average force

multiplied by distance moved in direction of force Work done negative when force is in opposite direction to displacement Kinetic energy is reduced/gets less

Free body diagram:
Weight vertically downwards (1)
Produced by gravitational pull of Earth (1)
F (resistive force/drag) parallel to slope and upwards (1)
Produced by (friction with) snow/air (1)

Resultant force: zero Work done by N: zero

12. <u>Free-body force diagram</u>

Normal reaction/contact force [or Nor R or push of table] upwards (1) E-M/Magnetic force [or magnetic attraction or pull of magnet] to right (1) Weight [or W or mg or gravitational force or gravitational attraction or pull of Earth] downwards (1) [Ignore labelled forces of fiction. or drag] [if unlabelled -1 each force]

3

[9]

4

2

3

2

2

Max 3

2

3

[9]

	<u>Forces</u> Pull on earth (1) Unwards [consequent] (1)		
	OR		
	Push/contact force/force on table (1) Downwards [consequent] (1)		
	OR		
	Force on magnet X (1) To left [consequent] [allow ecf] (1)	2	[5]
13.	Mass approximately 4 kg		
	Use of volume = $\pi r^2 \times h$ (1)		
	Use of mass = their volume above \times density (1)		
	Mass = 3.75 (i.e. \approx 4) [no u.e.] [Must be calculated to 2 significant figures at least] (1)	3	
	Calculation of change in g.p.e		
	Use of $\Delta g.p.e = mg\Delta h$ (ecf from above) (1)		
	39 – 44 J (positive or negative) (1)	2	
	Calculation of average power output		
	Use of Power = energy/time or use of $P = F \upsilon$ ($\upsilon = 1.8 \times 10^{-6} \text{ m s}^{-1}$) (1)		
	Correct conversion of time into seconds (604 800 s) (1)		
	$6.4 - 7.3 \times 10^{-5}$ W [e.c.f. gpe above] (1)	3	
	[Answer in J/day, J/week, J/hour – can get 2 marks, i.e.1 st and 3 rd marks]		
			[8]
14.	Magnitude of resultant force		
	4 cm line S / 1.7 cm line N	1	
	8 cm line NE / 8N resolved into two perp. components (5.7E & 1.7N or 5.7N)	1	
	Correct construction for vector sum	1	
	5.7-6.1N	1	
	Name of physical quantities		
	Vectors	1	
	Two other examples		
	Any two named vectors other than force	1	
			[6]

15.	Addition to diagram		
	Downwards arrow Y through middle third of left leg	1	
	Downward arrow Z with correct line of action	1	
	[Ignore lengths of arrows and point of action] [Must have at least one correct label to get 2 marks; no labels gets max 1 out of 2] [One correct label can get 2 marks]		
	Explanation		
	Quality of written communication	1	
	Clockwise moments = Anticlockwise when balanced	1	
	Y is smaller than X, but acts further from P	1	
	Moment of $X = X \times XP$ / Moment of $Y = Y \times YP$	1	
	Z has little or no moment about P/Z acts through P	1	
			[/]
16.	Resultant force		
	4 N to the right / 4 N with correct arrow (1)	1	
	Motion of object		
	(i) Constant velocity / $a = 0$ / constant speed (1)		
	(ii) Accelerates upwards (1)		
	(iii) Slows down (1)	3	
	Student's argument		
	The forces act on different bodies (1)		
	Therefore cannot cancel out / there is only one force acting on the body [consequent]	2	[6]

17. <u>Table</u>

Type of force	Example	
Gravitational	Weight/attraction between two masses	
Electromagnetic	Normal reaction/friction/drag/tension/force between two charges or magnets/ motor effect/ elastic strain forces/contact forces	
Nuclear	Strong/Weak/force keeping protons (and/or neutrons) together/beta decay/forces within nucleus	(1)

3

Forces

Any three from:

- same type (1)
- same magnitude/equal (1)
- act on different bodies/exerted by different bodies (1)
- opposite direction (1)
- same line of action (1)
- acts for same time (1) Max 3 [6]

18.	Deceleration	of trollev	
	Deceleration	or a one y	

Select $v^2 = u^2 + 2a$	ax /both appropriate formulas (1)		
Correct substitution	us (1)		
0.309 [2 significant	figures minimum](1)	3	
Frictional force			
Use of $F = ma(1)$			
8.7 / 8.6 N [8.4 if 0.	.3 used] (1)	2	
Power			
Use of $P = F v (1)$			
9.6/9.5 W [9.2 if 0	0.3 used] (1)	2	
Force			
Use of $a = (v - u)/t$	(1)		
Add 8.6 /8.7 N to re	esultant force [8.4 if 0.3 used] (1)		
42.8 N [42.6 if 0.3 u	used] [Accept 42.2 N] (1)	3	
		[10)]
~			
Criticism of stateme	ent		
Not a Newton third	law pair (1)		
Forces in equilibriu	m but not for reason stated (1)		
N3 pairs act upon d	ifferent bodies (1)		
N3 pairs same type	(1)		

Line of action different / rotation (1) Max 3

19.

Table

Gravitational (1)

Earth (1)

Upwards and downwards [both must be correct] (1)

Table (1)

Force	Type of force	Direction of Newton 3 rd law 'pair' force	Body 'pair' force acts upon
Weight	Gravitational	Upwards	Earth
Push of table	Electro-magnetic	Downwards	Table

20. (a) Free body force diagram for magnet

(Electro)magnetic / (force of) repulsion / push (1)

Weight / W / mg / pull (of Earth) / gravitational (attractive force) / attraction (of Earth) (1) [NOT gravity] [An additional incorrect force cancels 1 mark awarded]

(b) <u>Newton's third law pairs</u>

Force	Body on which corresponding force acts	Direction of the corresponding force	
Contact	(Wooden) stand/base	Downwards / down / ↓	(1) (1)
Magnetic	(Magnet) M ₁	Upwards / up / ↑	(1) (1)
Weight	Earth / Earth's surface	Upwards / up / ↑	(1) (1)

[8]

[7]

4

2

6

21. (a) <u>Calculation of weight</u>

Use of $L \times W \times H$ (1) Substitution into density equation with a volume and density (1) Correct answer [49.4 (N)] to at least 3 sig fig. [No ue] (1) 3 [Allow 50.4(N) for answer if 10 N/kg used for g.] [If 5040 g rounded to 5000 g or 5 kg, do not give 3rd mark; if conversion to kg is omitted and then answer fudged, do not give 3^{rd} mark] [Bald answer scores 0, reverse calculation 2/3] $80 \text{ cm} \times 50 \text{ cm} \times 1.8 \text{ cm} = 7200 \text{ cm}^3$ $7200 \text{ cm}^3 \times 0.70 \text{ g m}^{-3} = 5040 \text{ g}$ 5040 g × 10^{-3} × 9.81 N/kg = 49.4 (N) [May see : $80 \text{ cm} \times 50 \text{ cm} \times 1.8 \text{ cm} \times 0.7 \text{ g m}^{-3} \times 10^{-3} \times 9.81 \text{ N/kg}$ = 49.4(N)Horizontal and vertical components (b) (i) Horizontal component = $(83 \cos 37 N) = 66.3 N / 66 N (1)$ Vertical component = $(83 \sin 37 \text{ N}) = 49.95 \text{ N} / 50 \text{ N}$ (1) 2 [If both calculated wrongly, award 1 mark if the horizontal was identified as 83 cos 37 N and the vertical as 83 sin 37 N Add to diagram (ii) Direction of both components correctly shown on diagram (1) 1 Horizontal force of hinge on table top (iii) 66.3 (N) or 66 (N) and correct indication of direction [no ue] (1) 1 [Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.] Newton's First law of Motion (a) (i) An object will remain (at rest or) uniform/constant velocity/speed/motion in a straight line unless (an external/impressed) force acts upon it / 1 provided resultant force is zero. (1) Everyday situation (ii) Reference to air resistance / friction / drag etc. (1) 1 Equilibrium (iii) The resultant force is zero / no net force /sum of forces is zero / forces are balanced / acceleration is zero (1) 1 [Accept moments in place of force] (b) (i) Identify the other force Earth (1) Gravitational [consequent on first mark] [Do not credit gravity.] (1) 2

22.

[7]

 (ii) Why normal contact forces are not a Newton's third law pair
 Do not act along the same (straight) line / do not act from the same point (1) They act on the same body (1) They act in the same direction / they are not opposite forces (1) They are of different magnitudes (1)

23. (a) Complete statement of Newton's Third Law of Motionexerts an equal force on (body) A (1) (but) in the opposite direction (to the force that A exerts on B) (1)

['exerts an equal but opposite force on body A' would get both marks]

(b) <u>Complete the table</u>

1 mark for each of the three columns (1) (1) (1)

[Accept from earth for up. Accept towards ground or towards earth for down]

Earth	Gravitational. [Not 'gravity'. Not gravitational field strength]	Up(wards) / ↑
Ground		Down(wards) /↓

[5]

[7]

2

3

- - -